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ABSTRACT 
 

 In this paper, we propose and validate a 
computationally efficient non-iterative domain 
decomposition procedure for calculating bivariate cubic 
L1 smoothing splines. This domain decomposition 
procedure involves calculating local L1 smoothing splines 
individually on overlapping “extended subdomains” that 
cover the global domain and then creating the global L1 
smoothing spline by patching together the local L1 
smoothing splines. Using this procedure, we calculate the 
global L1 smoothing splines of one urban terrain data set 
(Baltimore) and one natural terrain data set (Killeen, 
Texas). The local L1 smoothing splines generally match 
well at subdomain boundaries but do not always do so. 
The current hypothesis is that the cases in which the local 
L1 smoothing splines do not match well at the boundaries 
of the subdomains are due to limitations in the 
compressed primal-dual algorithm that is used to calculate 
the local L1 smoothing splines. The non-iterative nature of 
this new domain decomposition procedure is in strong 
contrast to and is a large improvement over the iterative 
nature of all previously known domain decomposition 
procedures. With sequential and especially with parallel 
computation, the non-iterative L1 smoothing spline 
domain decomposition procedure will be a large factor in 
reducing computing time so that complex terrain models 
can be calculated and manipulated in real time. 
 
 

1. INTRODUCTION 
 

       Over the past five years, a number of publications 
have provided evidence that L1 smoothing splines and 
related L1 interpolating splines preserve the shape of 
urban and natural terrain well, better than any other type 
of spline (polynomial, rational, exponential or 
trigonometric). Cubic L1 smoothing and interpolating 

splines have been used to represent natural and urban 
terrain, geophysical features and financial processes 
(Champion and Lavery, 2002; Gilsinn and Lavery, 2002; 
Lavery, 2001, 2004; Lavery and Gilsinn, 2000, 2001; 
Wang et al., 2006) and can be used to represent other 
types of irregular data/functions such as geographical 
information, biological objects, mechanical objects, 
images, economic processes and social processes. L1 
interpolating splines have dominated the previous 
research on L1 splines. However, L1 interpolating splines 
have no compression capability. In contrast, L1 smoothing 
splines do provide compression, at the expense of some 
loss of information, of course. Previously, L1 smoothing 
splines have been calculated globally (Champion and 
Lavery, 2002; Gilsinn and Lavery, 2002). In this present 
paper, we investigate a new, non-iterative domain 
decomposition procedure for calculating L1 smoothing 
splines and present computational results for urban and 
natural terrain.  A related non-iterative domain 
decomposition procedure for L1 interpolating splines is 
currently under development by the authors of this present 
paper. 
 
 

2. COMPUTATIONAL MODEL 
 
 Bivariate cubic L1 smoothing splines, proposed by 
Gilsinn and Lavery (2002), are defined by minimizing the 
functional 
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Here, D is a 2D “global domain” over which a piecewise 
cubic L1 smoothing spline z(x, y) is to be calculated. The 
data to be approximated are 

mẑ  given at locations )ˆ,ˆ( mm yx , 
m = 1, 2, …, M with weights ˆmw . The quantity α is a 
balance parameter that determines the trade-off between 
fitting the data, represented by the sum, and ensuring that 
the smoothing spline does not have extraneous oscillation, 
represented by the integral. 
  

The cubic L1 smoothing splines that we use in this 
paper are created on regularly spaced rectangular grids 
with nodes ( , )i jx y , i = 0, 1, …, I, j = 0, 1, …, J, on the 
domain 0 0( , ) ( , )I JD x x y y= ×  and are based on Sibson 
elements (Han and Schumaker, 1997; Lavery, 2001). 
These smoothing splines are characterized by their 
elevation ( , )i jz x y  and derivatives ( , ) /i jz x y x∂ ∂ and 

( , ) /i jz x y y∂ ∂  at the nodes ( , )i jx y . The elevations and 
derivatives are determined by minimizing functional (1). 
To carry out this minimization, we discretize functional (1) 
in the following manner. Divide each cell 

1 1( , ) ( , )i i j jx x y y+ +× of D into K2 equal subrectangles, K ≥ 2. 
The integral over the cell is approximated by1/ 2 ( 1)K K −  
times the sum of the 2 ( 1)K K −  values of the integrand at 
the midpoints of the sides of the subrectangles that are in 
the interior of the rectangle. Minimization of the 
discretized version of (1) is a linear program that we solve 
using a compressed primal-dual algorithm (Wang et al., 
2006). For the computational results in this present paper, 
we added a matrix re-ordering procedure to the 
compressed primal-dual algorithm to reduce the 
bandwidth of the reweighted least squares matrices that 
occur in this algorithm and thereby increase the size of the 
domains that the algorithm can handle. 

 
Let L be a divisor of I and J. Divide the global 

domain D into equal subdomains of L L×  cells. Except at 
the boundary of the global domain, extend each 
subdomain of L L×  cells by E cells in all directions (top, 
bottom, right and left). This yields “extended 
subdomains” of ( 2 ) ( 2 )L E L E+ × +  cells (linear 
dimension L E+ cells when a subdomain borders on the 
boundary of the global domain). The domain 
decomposition procedure consists of three steps, namely, 
1) calculating the L1 smoothing spline individually on 
each of the extended subdomains, 2) restricting the spline 
on each extended subdomain to the basic subdomain of 
L L×  cells inside that extended subdomain and 3) 
creating the L1 smoothing spline on the global domain D 
by patching together the L1 smoothing splines on the 
L L× -cell subdomains. In contrast to all previous domain 
decomposition procedures, this procedure is non-iterative, 
that is, it does not require that information be transferred 
between subdomains and that Step 1 be repeated. 
Previous domain decomposition procedures cannot be 

non-iterative because the minimization principles were 
such that a change in the data at any point in the global 
domain affects the smoothing spline everywhere in the 
global domain. In contrast, a change in the data at a given 
point affects the L1 smoothing spline only in a limited 
region around that point. Thus, L1 smoothing splines can 
be calculated by a non-iterative domain decomposition 
procedure as long as L and E are sufficiently large. 
Determining appropriate L and E is a critical issue in 
implementing an L1 smoothing spline domain 
decomposition procedure. We consider this issue in the 
next section. 

 
We will present computational results for three 

artificial data sets and two real-terrain data sets. The three 
artificial data sets all consist of 641 641×  points on an 
equally spaced rectangular g rid. The first artificial data 
set has data with height 0 to the left of a north-south line 
through the center of the xy grid of this data set and height 
1 on and to the right of this line. The second artificial data 
set has data with height 0 to the left of a northeast-
southwest diagonal line through the center of the xy grid 
of this data set and height 1 on and to the right of this line. 
The third artificial data set has data with height 0 and 1 
alternatively for every 10 rows of the xy grid. The first 
real-terrain data set is an urban terrain data set consisting 
of 1000×1000 points of 1m-spacing data for Baltimore, 
MD provided by the Joint Precision Strike Demonstration 
Project Office (JPSD PO) Rapid Terrain Visualization 
(RTV) ACTD. The second real-terrain data set is a 
natural-terrain data set consisting of 1201×1201 points of 
DTED1 (100m spacing) data for Killeen, Texas provided 
by the National Geospatial-Intelligence Agency. The 
urban-terrain and natural-terrain data sets were previously 
used in (Champion and Lavery, 2002; Lavery, 2001, 2004; 
Lavery and Gilsinn, 2000, 2001; Wang et al., 2006). 

 
In all of the computational experiments in this paper, 

there are 9×9 = 81 points in each closed cell 
1 1[ , ] [ , ]i i j jx x y y+ +× . For very large domains, the “raw 

compression ratio”, that is the number of degrees of 
freedom in the data divided by the number of degrees of 
freedom in the L1 smoothing spline is therefore 82/3 = 
21.33.) For all the computation results in this paper, K = 3 
and ˆ 1mw =  for m = 1, 2, …, M. 
 
 
3. DETERMINING SIZES OF SUBDOMAINS AND 

EXTENDED SUBDOMAINS 
 
3.1 Relation between E and L 
 

To establish a relation between E and L, we will 
calculate the E that minimizes the computational cost of 
the domain decomposition procedure on a sequential 
computer. In the compressed primal-dual algorithm that 
we use to calculate L1 splines, the computational cost is 
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dominated by the cost of the factorization of the 
symmetric reweighted least-squares matrix on each 
iteration of this algorithm. (The number of iterations of 
the compressed primal-dual algorithm for L1 smoothing 
splines is roughly independent of the size of the 
domain/subdomain and is not a factor here.) Without loss 
of generality, assume that J ≤ I. For a global domain of 
I J×  cells, there are 3( 1) ( 1)I J+ × + unknowns ( ( , )i jz x y , 

( , ) /i jz x y x∂ ∂ and ( , ) /i jz x y y∂ ∂ at each node ( , )i jx y ), the 
number of superdiagonals (and subdiagonals) in the least-
squares matrix is 3J + 9 and the factorization of this 
reweighted, least-squares matrix therefore costs, to 
highest order, 3243IJ  flops.  For each extended 
subdomain of ( 2 ) ( 2 )L E L E+ × +  cells, there are 

23( 2 1)L E+ +  unknowns, the number of superdiagonals in 
the least-squares matrix of the compressed primal-dual 
algorithm is 3 6 9L E+ +  and the factorization of this 
matrix costs, to highest order, 4243( 2 )L E+  flops. The 
total operation count on a sequential computer for the 
( / ) ( / )I L J L×  subdomains is therefore 

4243( 2 ) ( / )( / )L E I L J L+ . With I, J and L fixed, the 
minimum of this expression occurs when / 2E L= . We 
will use this relation as a basis for the computational 
experiments reported in Subsec. 3.2 below. 
 
3.2 Determining E from Computational Experiments 
 

For the domain decomposition procedure outlined in 
Sec. 2 to perform non-iteratively as claimed, the “width” 
E of the ring around each subdomain needs to be large 
enough that the L1 smoothing spline on the basic 
subdomain of L L×  cells inside the extended subdomain 
is independent of the data outside of the extended 
subdomain. To determine how large E needs to be, we 
conduct a series of computational experiments to 
determine how far a perturbation in the data propagates in 
the L1 smoothing spline. 

  
In all of the computational experiments in this 

subsection, the total number of data points is 6412, the 
size of the domain D is 80 80× cells (which corresponds to 
L = 40, E = L/2 = 20) and there are (as previously stated) 
9×9 = 81 points in each closed cell.  For one set of 
computational experiments, we created a perturbation by 
adding a constant p to the heights at the 9×9 points at the 
center of the data set. In another set of computational 
experiments, we added a constant p to the heights at a set 
of 9×9 points at a corner. To determine the distance that a 
perturbation in the data propagates in an L1 smoothing 
spline, we compare the L1 smoothing spline of the 
perturbed data with the L1 smoothing spline of the 
original data. Differences in heights at the nodes are 
considered significant (“nonzero”) if they are, in absolute 
value, ≥ 10-3p. (The level 10-3p is consistent with the 

numerical accuracy of the compressed primal-dual 
algorithm used to calculate L1 smoothing splines.) 

 
We carried out 3 sets of computational experiments 

with, respectively, the first, second and third artificial data 
sets, each with balance parameter α = 0.05, 0.1 and 0.2. 
We also carried out 2 sets of computational experiments 
with a 641×641 portion of the urban terrain data set and 2 
sets of computational experiments with a 641×641 portion 
of the natural terrain data set , each with α = 0.05, 0.1 and 
0.2. In these computational experiments, the minimum, 
median, average and maximum distances propagated by 
the perturbation in the L1 smoothing splines were 0, 4, 
12.19 and 40 cells, respectively. When the optimal α was 
chosen, the minimum, median, average and maximum 
distances propagated by the perturbation in the L1 
smoothing splines were 0, 2, 5.07 and 11, respectively. 
(The optimal α value can be different for different data 
sets.) In the following, we present results of 
computational experiments for the Baltimore data set with 
p = 100 and α = 0.2 and for the Killeen data set with p = 
200 and α = 0.2 . 

 
Figures 1a and 1b are the original surface and the L1 

smoothing spline, respectively, for the Baltimore data. 

 
Fig. 1a. 641×641 portion of Baltimore data set 

 
Fig. 1b. L1 smoothing spline for 641×641portion of 

Baltimore data set 
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Figures 2a and 2b are the original surface and the L1 
smoothing spline, respectively, for the Baltimore data 
with the perturbation at the center of the data. Fig. 3 is the 
difference between the L1 smoothing spline with the 
perturbation, shown in Fig. 2b, and the L1 smoothing 
spline without the perturbation, shown in Fig. 1b. 

 

 
Fig. 2a. 641×641 portion of Baltimore data set with 

perturbation at center  

 
Fig. 2b. L1 smoothing spline for 641×641portion of 

Baltimore data set with perturbation at center 

 
Fig. 3. Difference between the L1 smoothing splines of 

Figs 2b and 1b 

Figures 4a and 4b are the original surface and the L1 
smoothing spline, respectively, for the Baltimore data 
with the perturbation at a corner of the data. Fig. 5 is the 
difference between the L1 smoothing spline with the 
perturbation, shown in Fig. 4b, and the L1 smoothing 
spline without the perturbation, shown in Fig. 1b. 

 

 
Fig. 4a. 641×641 portion of Baltimore data set with 

perturbation at corner 

 
Fig. 4b. L1 smoothing spline for 641×641portion of 

Baltimore data set with perturbation at corner 

 
Fig. 5. Difference between the L1 smoothing splines of 

Figs 4b and 1b 
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Figures 6a and 6b are the original surface and the L1 
smoothing spline, respectively, for the Killeen data. 

 
Fig. 6a. 641×641portion of Killeen data set 

 
Fig. 6b. L1 smoothing spline for 641×641portion of 

Killeen data set 
 

Figures 7a and 7b are the original surface and the L1 
smoothing spline, respectively, for the Killeen data with 
the perturbation at the center of the data. Fig. 8 is the 
difference between the L1 smoothing spline with the 
perturbation, shown in Fig. 7b and the L1 smoothing 
spline without the perturbation, shown in Fig.  6b. Figures 
9a and 9b are the original surface and the L1 smoothing 
spline, respectively, for the Killeen data with the 
perturbation at a corner of the data. Fig. 10 is the 
difference between the L1 smoothing spline with the 
perturbation, shown in Fig. 9b and the L1 smoothing 
spline without the perturbation, shown in Fig.  6b. 

 
Fig. 7a. 641×641portion of Killeen data set with 

perturbation at center 

 
Fig. 7b. L1 smoothing spline for 641×641portion of 

Killeen data set with perturbation at center 

 
Fig. 8. Difference between the L1 smoothing splines of 

Figs 7b and 6b 
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Fig. 9a. 641×641portion of Killeen data set with 

perturbation at corner 
 

 
Fig. 9b. L1 smoothing spline for 641×641portion of 

Killeen data set with perturbation at corner 
 

 
Fig. 10. Difference between the L1 smoothing splines of 

Figs 9b and 6b 
 

 
In Figs., 3, 5, 8 and 10, the significant differences, 

that is, those 310 p−≥  in absolute value, occur at most 6 

cells distant from the locations of the perturbations in Figs. 
2a, 4a, 7a and 9a. 
 
 

4. COMPUTATIONAL RESULTS FOR URBAN 
AND NATURAL TERRAIN 

 
 So that the ring by which each subdomain is extended 
is large enough to assure that the L1 smoothing spline in 
that subdomain is not affected by the data outside the 
extended subdomain, we need to choose E to be greater 
than the maximum of 6 cells that the perturbation 
propagates in Figs. 3, 5, 8 and 10 and greater than the 
maximum of 15 cells that the perturbation propagates in 
the other computational experiments reported at the 
beginning of Subsec. 3.2. We choose E = 20. We use the 
optimal α = 0.2 . 
  

We first calculate the global L1 smoothing spline for 
a 993 993×  portion of the Baltimore data set, depicted in 
Fig. 11a, by domain decomposition. We set up a 
smoothing spline grid of 124×124 equal cells that 
precisely covers the 993 993×  data grid. We divide the 
smoothing spline grid into four subdomains, each of 
62×62 cells (L = 62), that overlap only at their boundaries. 
We calculate the local L1 smoothing splines on each of the 
four extended subdomains of size 82×82 and then create 
the global L1 smoothing spline by patching together the 
four local L1 smoothing splines. Numerical errors in the 
compressed primal-dual algorithm result in the four local 
L1 smoothing splines not matching exactly on overlapping 
boundaries. The minimum, median, average and 
maximum of the absolute values of the differences of the 
z, ∂z/∂x and ∂z/∂y at the smoothing spline nodes on 
overlapping subdomain boundaries are given in Table 1. 
 
Table 1. Minimum, median, average and maximum of the 

absolute values of the differences of quantities on 
overlapping subdomain boundaries for Baltimore data. 

 
 Min Median Average Max 

( , )i jz x y  0 0.0071 0.1575 2.6137 

( , ) /i jz x y x∂ ∂  0 0.0027 0.0602 1.3892 

( , ) /i jz x y y∂ ∂  0 0.0008 0.0250 1.5404 

 
 
 As the data in Table 1 indicates, the differences in z, 
∂z/∂x and ∂z/∂y at the smoothing spline nodes on 
overlapping subdomain boundaries are generally small 
compared to the total difference in elevation of 100 in the 
Baltimore data set. The maximum absolute differences of 
2.6137, 1.3892 and 1.5404 in z and its derivatives need to 
be investigated further to determine whether they are due 
to numerical limitations of the compressed primal-dual 
algorithm or to some other cause. When patching the local 
L1 smoothing splines together to create the global L1 
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smoothing splines, we resolve the (generally only slight) 
differences in z, ∂z/∂x, and ∂z/∂y at the nodes on 
overlapping subdomain boundaries by averaging the two 
or more values of each quantity at each node. In Fig. 11b, 
we present the global L1 smoothing spline calculated by 
domain decomposition for the 993×993 portion of the 
Baltimore data set.  

 
Fig. 11a. 993×993 portion of Baltimore data set 

 
Fig. 11b. L1 smoothing spline calculated by domain 

decomposition for 993×993 portion of Baltimore data set 
 

We also calculate the global L1 smoothing spline for 
the Killeen data set, depicted in Fig. 12a, by domain 
decomposition. We set up a smoothing spline grid of 
150×150 equal cells that precisely covers the 1201×1201 
data grid. We divide the smoothing spline grid into nine 
subdomains, each of 50×50 cells (L = 50), that overlap 
only at their boundaries. We calculate the local L1 
smoothing splines on each of the four extended 
subdomains of size 70×70 cells (at corners), the four 
extended subdomains of size 70×90 cells (on boundaries 
of the global domain but not at a corner) and the one 
extended subdomain of size 90×90 cells (in the interior) 
and then create the global L1 smoothing spline by 
patching together the nine local L1 smoothing splines on 
the basic subdomains inside these extended subdomains. 
The minimum, median, average and maximum of the 
absolute values of the differences of the z, ∂z/∂x and ∂z/∂y 

at the smoothing spline nodes on overlapping subdomain 
boundaries are given in Table 2. 
 
Table 2. Minimum, median, average and maximum of the 

absolute values of the differences of quantities on 
overlapping subdomain boundaries for Killeen data. 

 
 Min Median Mean Max 

( , )i jz x y  0 0.1600 0.3556 4.2500 

( , ) /i jz x y x∂ ∂  0 0.0320 0.0899 1.1394 

( , ) /i jz x y y∂ ∂  0 0.0280 0.0703 1.4139 

 
 As was the case for the data in Table 1, the data in 
Table 1 indicates that the differences in z, ∂z/∂x and ∂z/∂y 
at the smoothing spline nodes on overlapping subdomain 
boundaries are generally small compared to the total 
difference in elevation of 230 in the Killeen data set but 
the maximum absolute differences of 4.2500, 1.1394 and 
1.4139 need to be investigated further. Averaging the 
(generally only slightly) different values of z, ∂z/∂x, and 
∂z/∂y at the nodes on overlapping subdomain boundaries, 
we produce the global L1 smoothing spline calculated by 
domain decomposition for the Killeen data set presented 
in Fig. 12b. 

 
Fig. 12a. 1201×1201 Killeen data set 
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.

 
Fig. 12b. L1 smoothing spline calculated by domain 

decomposition for Baltimore data set 
 
 

5. CONCLUSION 
 
 The computational results presented in this paper 
indicate considerable success in designing a new non-
iterative domain decomposition procedure and also 
indicate an open question. The local L1 smoothing splines 
generally match well at subdomain boundaries but do not 
always do so. The current hypothesis is that the cases in 
which the L1 smoothing splines do not match well at the 
boundaries of the subdomains are due to limitations in the 
compressed primal-dual algorithm. Whether this 
hypothesis is correct or not will be a topic of future 
research. 
 
 The non-iterative domain decomposition procedure 
for L1 smoothing splines introduced in this paper reduces 
a minimization problem on the global domain to a set of 
disjoint minimization problems on overlapping “extended 
subdomains” and thereby reduces the computational 
load—by orders of magnitude if the global domain is 
large and there are a large number of small extended 
subdomains. The non-iterative nature of this domain 
decomposition procedure is in strong contrast to and is a 
large improvement over the iterative nature of all 
previously known domain decomposition procedures for 
splines and for elliptic partial differential equations. If 
successful, this domain decomposition procedure will 
allow L1 smoothing splines to be used for compression in 
urban and natural terrain models. With sequential and 
especially with parallel computation, the non-iterative L1 
smoothing spline domain decomposition procedure will 
be a large factor in reducing computing time so that 
complex terrain models can be calculated and 
manipulated in real time. 
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